If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8m^2-24=0
a = 8; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·8·(-24)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*8}=\frac{0-16\sqrt{3}}{16} =-\frac{16\sqrt{3}}{16} =-\sqrt{3} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*8}=\frac{0+16\sqrt{3}}{16} =\frac{16\sqrt{3}}{16} =\sqrt{3} $
| 5(2-4)+2=2(d/2)-4 | | k^2+7=0 | | x/5+8=19 | | X/4=x+5/10 | | 5.5-5x=5 | | 617-d=543 | | 3x+15=31-5 | | 6k-12=138 | | 29/18+1/2x=-5/3(x1/3) | | (d^2+3)(d^2+2d+1)=0 | | |9n+4|+17=10 | | s*4+35=75 | | 4x+2+3x=7x+2 | | 1.8(a-2)-2.6(a+4)=40 | | 7k-15=2k-5 | | -2x+3=6(x-3)-3 | | 20-4(x+3)=-2(x-2) | | 65-2x^2=15 | | 1.5(a+2.1)=3.3a | | 5x+7=72/x+1 | | 3(x-12)=-45 | | 9x^+6x-3=0 | | 2(2X+6)=4(x-3) | | 12x=-168 | | 3x–(27+39)=18 | | x^2+(x^2+7)=17 | | 9-3x=5x-23 | | X*(x+7)=17 | | 3/2u−2/11=7/8 | | 10x+2(x+5)=4-2x | | -2,5(4r+8)=r(10-5) | | 7x-8=9x-14 |